

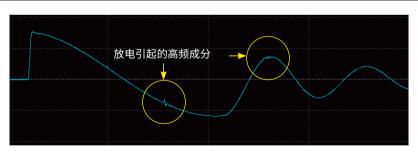
脉冲线圈测试仪 ST4030A IMPULSE WINDING TESTER ST4030A

将数据统计分析

用于前序工艺的反馈,提升品质

轻松进行放电检测,不需要额外的设备

(例如用于放电检测的天线等)


线圈测试的标准仪器

能够检测到以往很难检测到的不良现象

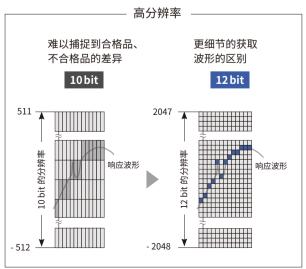
检测出响应波形的细微变化

高速采样 × 高分辨率

100 MHz

-直以来的 **问题**

难以捕捉到瞬间的 变化

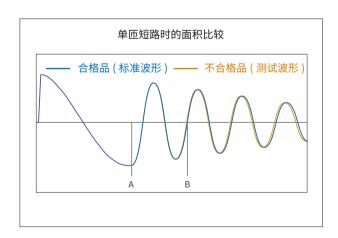


200 MHz

ST4030A

精细的获取瞬间的 变化

能检测出单匝短路

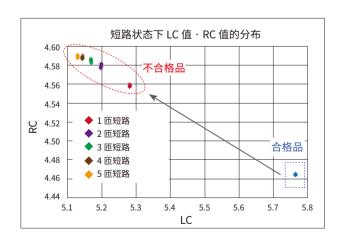

NEW

响应波形的定量化

※ 使用 Toenec 公司专利

传统

基于波形的面积进行比较



面积差如果不到几个百分点,那么进行合格与否判定就很困难

通过计算指定的 A-B 光标区间的 "标准波形"和"测试波形"的面积差,进行合格与否判定。

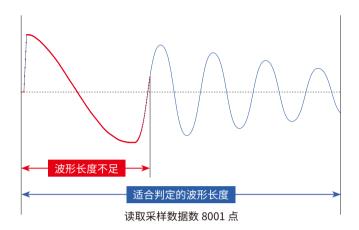
新方案

响应波形的定量化

合格品和不合格品的分布不同

即使是那些难以判断的、些微的波形差异, 如果是 LC·RC 的话,就能知道合格品与不合格品的差异 因为判定阈值可以明确化,从而能够进行合格与否判定。

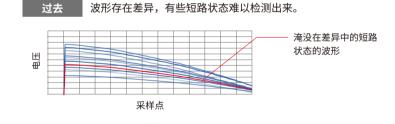
^{*}可检测的马达请参照最终页技术参数"可测试的电感范围"。只是,有时会有一些限制条件,具体请垂询本公司销售工程师,进行预约样机测试等确认。


足够用于判定的采样数据数

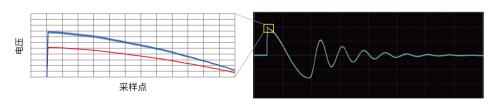
不错漏响应波形的细微变化

以往由于提高采样频率,对于可捕捉的波形长度会有所限制。

而 ST4030A 因为采样点数多,即使是在 200 MHz 采样速度下也可以捕捉到所需要的波形长度。

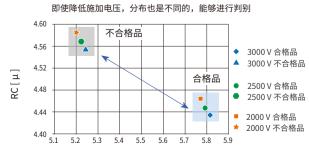


提高施加电压的重现性


通过较高的重复精度检测出不合格品

因为施加电压的差异很小,因此能够依靠高精度检测出不合格的产品。
而且,因为测量同一被测物时的仪器之间的偏差很小,所以即使替换仪器也仍能使用标准件的数据。

施加电压的差异示意图



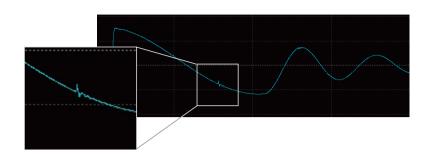
ST4030A 波形差异小,能以高精度检测出不合格品。

通过施加电压的低压化减少伤害

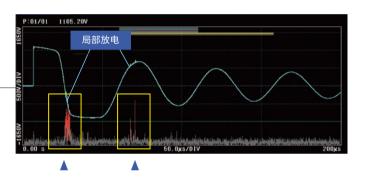
无论施加电压的大小,都能通过 LC·RC 值去判别 合格品和不合格品。

LC [p]

NEW 放电检测功能 ST9000


※ 与爱信 AW 有限公司共同开发

高精度检测微短路


通过检测淹没在噪音中的"微弱的局部放电",掌握马达线圈之间的绝缘不良(微短路)。

配备 HIOKI 滤波器 ※

在响应波形中出现的高频成分之中,去除出现在波形整体的噪音成分,仅提取局部放电成分进行判定。

利用 HIOKI 独有的滤波功能对高频放电成分进行提取

绝缘击穿电压测试 (Break Down Voltage)

搭载了一些标准中所需要的绝缘击穿电压测试功能。对被测物慢慢提升施加电压的同时进行脉冲测试,根据响应 波形的 LC·RC 值、放电量、波形面积等对绝缘击穿电压进行评估。

──利用丰富的判定项目完成稳定的检测 —— LC·RC值 放电量 波形面积 峰值电压值 振动频率

各个判定结果都为 PASS 时,执行测试直至最高电压。

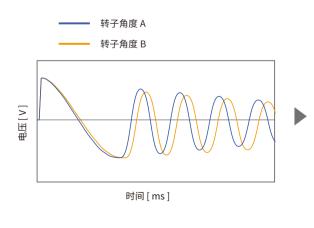
- BDV 的设置范围

设置范围:100 V ~ 4200 V 设置步进分辨率:10 V 步数:最多32 步

FAIL 判定示例 (在 2000V 放电 FAIL)

各个判定结果的任一项为 FAIL 时,视为绝缘击穿开始, 在那个时间点测试结束。击穿电压波形以红色显示。

能够在装有转子的成品状态下进行测试

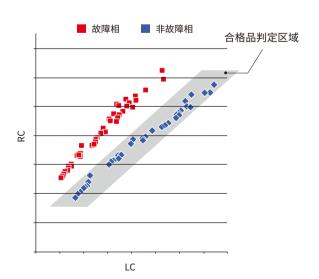


过去的波形判定

由于转子的安装位置和角度,响应波形各不相同,无法明确的设置判定标准。

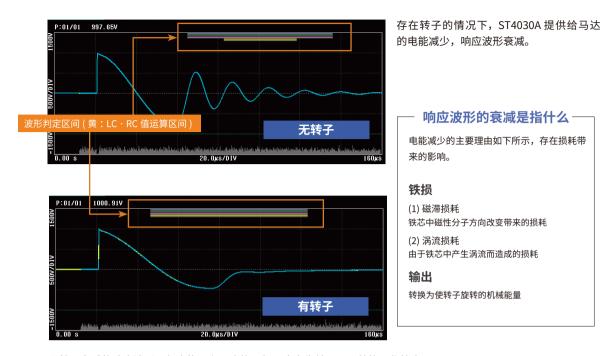
转子旋转时的电压波形变化(示意图)

转子角度 A 和 B 位置造成波形变化,难以决定波形比较的标准。



通过 LC·RC 值进行数值判定

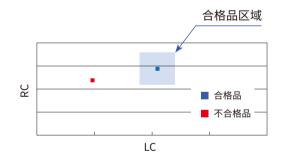
通过使用非故障相来设置合格品判定区域,使得在装有转子的成品状态下进行脉冲测试成为可能。


转子旋转时 (各 50 点) LC · RC 值

旋转转子对 LC·RC 值进行采样,则相对非故障相,故障相的分布不同。

可对应因马达特性导致的响应波形差异

对于由转子铁损导致的响应波形共振小的马达,ST4030A 可以自动调整判定区间,在电压振幅较大的区间实施判定。


虽然是衰减的响应波形,但合格品和不合格品如果也产生差异,那就能用作检查。

将数据统计分析用于前序工艺的反馈,提升品质

通过响应波形的数值化,能够进行定量化管理

判定标准值明确化

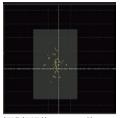
能以合格品·不合格品的数值数据为基础,明确规 定判定标准。能够掌握不合格品相对于合格品存在 怎样程度的差异。

将测试结果灵活运用于生产品质管理

在日常工作中使用统计品质管理方法。通过统计数据的累积,溯源线圈的不良状态估测·预防再发生。

被测量物	LC[p]	RC [μ]										
1	228	4.21	12	,								
2	227	4.22	12	·							合格	品
3	226	4.22	10) —								
4	228	4.23										
5	227	4.22	8	1								
6	226	4.21	聚 6	;								
7	227	4.23	型 。									
8	225	4.22	4	+		不合	格品					
0	219	6.51	2	, 🖳		ا ۱۲ <u></u>	11600					
17	227	4.22	2	•								
			0) 		بالجلا	المحجمين			1.	-	- 1
18	228	4.21			216	218	220	222	224	226	228	230
19	218	6.52							~ []			
20	229	4.23						LC	C[p]			

根据 LC·RC 值的分布生成合格品判定区域

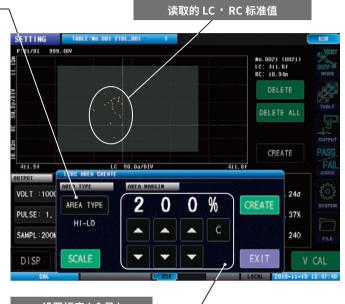

测试条件设置时的辅助功能

自动设置合格品的判定区域

为了判定被测物是否合格,使用标准件的测试值,读取 LC·RC 标准值。 根据读取的 LC·RC 标准值自动生成合格品判定区域。

选择合格品判定区域的形状

HI-LO 长方形合格品判定区域



标准标记的 LC·RC 值 分布固定的情况

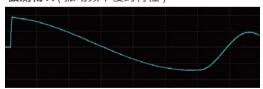
FIT 梯形合格品判定区域

装有转子的马达, 根据转子位置 (角度), LC·RC 值分布为带状的情况

设置幅度(余量)

设置自动生成合格品判定区域时的 幅度(余量)

CREATE

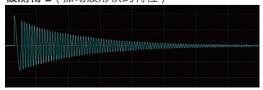

按下此键执行自动生成

生成的合格品判定区域在 LCRC 图 形上显示为灰色四边形

自动设置波形的获取范围

根据被测物的类型不同,响应波形的振动频率也不同。为了使得 LC·RC 值运算、波形判定功能能够使用足够的波形数据,自动调节采样频率和采样数据,使得波形获取范围最优化。

被测物 A(振动频率慢的特性)


响应波形的振动频率慢,捕捉的波形长度不够。 需要将采样频率调慢。

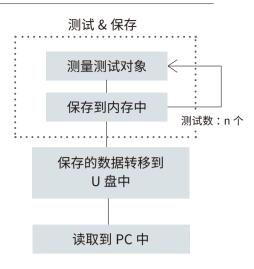
通过自动调节获取最合适的波形捕捉长度

波形获取范围最优化

被测物 B (振动波形快的特性)

响应波形的振动频率快,捕捉了不需要的波形。需要 将采样频率调快,或者减少采样数据数。

方便的功能,记录·活用数值化的测试结果


利用电脑分析轻松分析测试结果

存储功能·U盘

最多可将 1000 个测试结果保存在内存中。可转移到 U 盘中再读入到电脑。

通过计算软件打开测量数据,可用于差异分析或检查数据的管理。

内存数据

测试结果: CSV 文件格式

可以保存在 U 盘中的项目

测试结果:CSV 文件格式 测量画面:BMP 文件 本仪器的设置:任一组设置 所有设置

通过表格计算软件进行分析

支持 PLC·PC 的编程

迅速搭建产线

EXT.I/O 测试

可以确认从外部控制端子(EXT.I/O)发出的输出信号是否正常,或者是否正常读入输入信号。

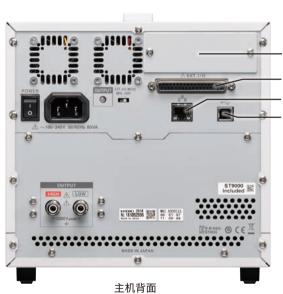


I/O OUT:从所选的按键名的 I/O 输出针输出 (ON) 信号。

I/O IN:在输入信号中,用绿色点亮信号为输入 (ON) 的信号线名。未输入信号的信号线为灰色。

通讯监视器


可在画面上显示通讯命令以及查询的响应,因此可 在搭建产线时,边确认实时的运作情况边进行作 业。



通讯显示器上所显示的命令分别为不同颜色, 易于进行验证工作。

用于线圈检查系统的组建

节省空间、1/2 机架尺寸

- 3. EXT I/O (外部控制端子)
- 4. LAN
- 5. USB (用于连接 PC)

GP-IB接口Z3000

RS-232C接口Z3001

用于线圈检查系统的组建

丰富的接口

PC 接口

可从 PC 通过 USB、LAN、GP-IB、RS-232C,使用通讯命令对本仪器进行控制。

LAN

连接器	RJ-45 连接器
电气规格	依据 IEEE802.3
传输方式	10BASE-T / 100BASE-TX / 1000BASE-T 自动识别
协议	TCP/IP

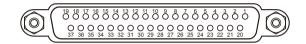
GP-IB (选件)

	依据标准	IEEE-488.2
	功能规格	SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0
	设备地址	0~30

USB 设备 (用于连接 PC)

连接器	B 系列插口
电气规格	USB2.0 (Full Speed / High Speed)

RS-232C (选件)


连接器 D-sub 9 针 公头 通讯方式 全双工 同步方式 异步方式 流控制 软件 (XON / XOFF 控制)		
同步方式 异步方式 流控制 软件 (XON / XOFF 控制)	连接器	D-sub 9 针 公头
流控制 软件 (XON / XOFF 控制)	通讯方式	全双工
	同步方式	异步方式
区况注应 0000 10000 00100 F7000 base	流控制	软件 (XON / XOFF 控制)
週讯速度 9600,19200,38400,57600 bps	通讯速度	9600,19200,38400,57600 bps

EXT.I/O

EXT.I/O 可向外部设备输出测量结束信号 (EOM 信号)、判定结果信号 (PASS / FAIL) 等,或从外部设备输入 START 信号等对测试仪进行控制。

连接器

使用连接器(主机端)	D-SUB 37 针		
使用迁按格(土机响)	母头 #4-40 英寸螺丝		
	DC-37P-ULR (焊接型)		
适用连接器	DCSP-JB37PR (压接型)		
	日本航空电子工业公司生产		

输入信号

引脚	信号名	说明
J I DAP	ID 건 TI	りしゃり
1	START	根据 START 信号的 ON 边沿开始测试。
20	STOP	在测试期间如果检测到 STOP 信号的 ON 边沿,则停止测试。
20	INTERLOCK	本仪器的联锁设置为 ON 时, INTERLOCK 信号为 ON 期间解除联锁状态。
4~7, 22~25	TBL0~7	选择切换保存的测试条件的组编号。


输出信号

28 EOM 在测试结束时输出。ERR 信号在 EOM 信息输出的时间点更新。 10 ERR 发生开路错误、硬件错误等测量错误时输出。 18 PASS 输出综合判定结果 PASS。 37 FAIL 输出综合判定结果 FAIL。 11~13 OUT_XXX 在各判定功能为 OUT 判定时输出。 16 可作为通用输出端子使用								
29 INDEX 如果本信号从 OFF 变为 ON,则探头可开路在测试结束时输出。ERR 信号在 EOM 信息输出的时间点更新。 10 ERR 发生开路错误、硬件错误等测量错误时输出。 18 PASS 输出综合判定结果 PASS。 37 FAIL 输出综合判定结果 FAIL。 11~13 OUT_XXX 在各判定功能为 OUT 判定时输出。 16 可作为通用输出端子使用	引脚	信号名	说明					
28 EOM 输出的时间点更新。 10 ERR 发生开路错误、硬件错误等测量错误时输出。 18 PASS 输出综合判定结果 PASS。 37 FAIL 输出综合判定结果 FAIL。 11~13 30~32 OUT_XXX 在各判定功能为 OUT 判定时输出。 16 可作为通用输出端子使用	29	INDEX	表示模拟测量 (脉冲施加、采样)结束。 如果本信号从 OFF 变为 ON,则探头可开路。					
18 PASS 输出综合判定结果 PASS。 37 FAIL 输出综合判定结果 FAIL。 11~13 OUT_XXX 在各判定功能为 OUT 判定时输出。 16 可作为通用输出端子使用	28	EOM	在测试结束时输出。ERR 信号在 EOM 信号输出的时间点更新。					
37 FAIL 輸出综合判定结果 FAIL。	10	ERR	发生开路错误、硬件错误等测量错误时输出。					
11~13 30~32 OUT_XXX 在各判定功能为 OUT 判定时输出。	18	PASS	输出综合判定结果 PASS。					
30~32 OUT_XXX 在各判定功能为 OUT 判定时输出。	37	FAIL	输出综合判定结果 FAIL。					
16, 可作为通用输出端子使用。		OUT_XXX	在各判定功能为 OUT 判定时输出。					
17,35 OUT0~2 可通过:IO:OUTPut 命令控制输出信号。	,	OUT0~2						

绝缘电源输出

引脚	信号名	NPN/PNP 开关设置				
JIDAP	旧ち石	NPN	PNP			
8	ISO_5V	绝缘电源 +5 V	绝缘电源 -5 V			
9, 27	ISO_COM	绝缘电源公共端口	绝缘电源公共端口			

测量时序示例

项目	内容	时间
t1	START 信号 ON 的时间	1ms 以上
t2	触发检测时间	1ms (代表值)
t3	组切换时间	10 ms (代表值) ** 切换后的组的测试电压比切换前的测试电压下降的 情况,加上内部放电时间。
t4	触发延迟时间	0.000 s~9.999 s
t5	模拟测量时间	50ms (设置电压 3000V、采样频率 200MHz、施加 1 脉冲时的代表值)
t6	运算・判定时间	15ms (AREA, DIFF, FLUTTER,LAPLACIAN 判定功能有效时的代表值) ** 施加多个脉冲时,为最终脉冲的各个判定运算时间。

测试时间(参考值)

测量时间	EOM= (INDEX+ 软	件处理时	间 + 各判!	定时间)× 於	加脉冲数		
(EOM)	※ 消磁脉冲没有软件处理时间、			司、各个判定时间			
, ,	* 施加多个脉冲时	, 请控制:	各个脉冲的	的施加间隔时	间至少不小	于脉冲	
	施加间隔设置时						
模拟测量时间	充电、施加、采样		的时间 (1	代表值)			
(INDEX)	设置电压 10	00 V	1000 V	2000 V	3000 V]	
	INDEX 时间 30	ms	30 ms	40 ms	50 ms		
软件处理时间	数据传输等的软件	处理时间	(代表值),处理时间	: 10ms		
	*S/s: 200 MHz, DI	SP: THIN					
各个判定时间	各个判定功能有效	时的处理	时间 (代表	表值)			
	判定	处理时间					
	AREA ^{₩1}	1ms					
	DIFF**1	1ms					
	FLTR**1	1ms					
	LAPC**1	1 ms	- - ※1:判定区域 1500 pt				
	LC ⋅ RC ^{**2}	100 ms		算区域 1500			
	DISCHARGE**3	75 ms	*3:S/s 200 MHz 时,判定区域 8001 pt				

电气规格

0 0,7011		
输入信号	输入形式	光电耦合器绝缘无电压触电输入 (支持 Sink/Source 电流输出)
	输入 ON	残留电压 1V 以下、输入 ON 电流 4mA (参考值)
	输入 OFF	OPEN (截止电流 100μA 以下)
	输出形式	光电耦合器绝缘开漏输出 (无极性)
输出信号 内置 绝缘电源	最大负载电压	DC 30 V
	最大负载电流	50 mA/ch
	残留电压	1 V 以下 (负载电流 50 mA) / 0.5 V 以下 (负载电流 10 mA)
	输出电压	支持 sink 电流输出:+5.0 V±0.8 V、支持 source 电流输出:-5.0 V±0.8 V
	最大输出电流	100 mA
	绝缘	浮动于保护接地电位以及测量回路
	绝缘额定	对地电压 DC 50 V、AC 30 V rms、AC 42.4 V peak 以下

技术参数 (精度保证期1年,调整后精度保证期1年)

施加电压	100 V~4200 V (设置分辨率:10V步)		
可测试电感范围	10 μH ~ 100 mH		
采样频率	200 MHz / 100 MHz / 50 MHz / 20 MHz /10 MHz		
采样分辨率	12 bit		
电压检测精度	【DC 精度】±5% of setting,[AC 带宽] 100 kHz:±1 dB		
	精度保证条件:23℃ ±5℃,80% rh 以下		
采样数据数	1001~8001 点 (1000 点步)		
判定方法	标准件和被测物施加相同的脉冲电压,分别比较其响应波形的波形、LC·RC 值、放电成分量,进		
	行合格与否判定。		
	LC·RC 值判定	LC·RC 值判定 (LCRC AREA)	
	波形判定	波形面积比较判定 (AREA)	
		波形面积差比较判定 (DIFF-AREA)	
		波形抖动检测判定 (FLUTTER)	
		波形二阶导数检测判定 (LAPLACIAN)	
	放电判定 (装有 ST9000 时)	放电判定 (DISCHARGE)	
绝缘击穿电压测试模式	对被测物慢慢提升施加电压同时进行脉冲测试,测试判定绝缘击穿电压。绝缘击穿的判定使用波		
	形面积判定、放电判定、LC·RC 值判定。		
测试条件组数	255 (测试条件设置、判定条件设置、标准波形)		
测试时间	约 60 ms (3000V、1 脉冲、判定 OFF 时的参考值)		
显示	显示器:8.4 英寸 SCGA 彩色 TFT 液晶 (800 ×600 点),触摸面板		
安全保护功能	按键锁定、联锁、双动作 (预防测试开始时的误操作)		

※ 最大施加能量:约 55 mJ

诵用参数

使用场所	室内使用,污染度 2,海拔高度 2000m 以下		
使用温湿度范围	0°C ~ 40°C, 80% rh 以下 (未结露)		
保存温湿度范围	-10℃~50℃,80% rh 以下 (未结露)		
适用标准	安全性:EN 61010, EMC:EN 61326 Class A		
电源	AC100 V~ 240V,50 Hz/60 Hz		
外部接口	标配:EXT.I/O,USB 主机 (存储),USB 设备 (通讯用),LAN 选件:RS-232C (Z3001),GP-IB (Z3000)		
外形尺寸	约 215 W × 200 H × 348 D mm (不含突起物)		
重量	约 6.7 kg		
附件	电源线,使用说明书,应用软件光盘,使用注意事项		

品名:脉冲线圈测试仪 ST4030A

型号

ST4030A

功能追加选件

放电检测功能 ST9000

ST9000 放电检测功能,是脉冲线圈测试仪 ST4030A 的选件(工厂出货)。如需要,请务必在下订单时指定。

洗件

夹型测试线 L2250

(最大额定高电压 AC3300 Vpeak

线长 1.5m)

自制用测试线 L2252

(最大额定电压 AC4200 Vpeak 线长 2m)

注意:电缆寄生成分的影响

振动波形根据线缆长度变化。如果想咨询将线缆电容控制在一定

范围内的特注品的对应,请垂询距您最近的日置分公司或事务所。

RS232C 接口 Z3001

RS232C 连接线 9637 (9针-9针,交叉型, 线长1.8m)

欢迎拨打客户服务热线:400-920-6010

或发送邮件至: info@hioki.com.cn

日置(上海)测量技术有限公司

上海市黄浦区西藏中路268号 来福士广场4705室

邮编:200001

电话:021-63910350,63910090,63910092,63910096,63910097

传真: 021-63910360

客户服务 维修服务中心

电话: 021-63343307,63343308 传真: 021-63910360 E-mail: weixiu@hioki.com.cn

现地研发中心 日置(上海)科技发展有限公司

上海闵行区剑川路951号 零号湾科技大厦南楼408A室 邮编:200240 电话:400-920-6010

苏州联络事务所

苏州市虎丘区狮山路199号 新地中心1107室

 邮编: 215011
 邮编: 110000
 邮编: 710065

 电话: 0512-66324382, 66324383
 电话: 024-23342493, 23342953, 23341826
 电话: 029-88896503,88896951
 传真: 0512-66324381

南京联络事务所

南京市江宁区江南路9号招商高铁网谷A座3层313室 邮编: 210012 电话: 025-58833520 传真: 025-58773969

北京分公司 北京市朝阳区东三环北路5号 北京发展大厦818室 邮编:100004

电话: 010-85879168, 85879169 传真: 010-85879101

沈阳联络事务所

沈阳市皇姑区北陵大街20号 甲思源大厦709室

传真: 024-23341826

济南联络事务所

济南市高新区颖秀路2766号 科研生产楼1-101-303室 邮编:250000 电话:0531-67879235

成都分公司

成都市镍汀区琉璃路8号 华润广场B座1608室 邮编:610021

电话: 028-86528881, 86528882 传真: 028-86528916

西安联络事务所

西安市雁塔区锦业路一号 都市之门C座1606室

传真: 029-88850083

武汉联络事务所

电话:027-83261867

武汉市经济技术开发区 东风三路1号东合中心B座1502室 邮编:430056

广州分公司

广州市天河区体育西路103号 维多利广场A塔3206室 邮编:510620

电话: 020-38392673, 38392676 传真: 020-38392679

深圳分公司

深圳市福田区深南中路3031号 汉国城市商业中心3202室

邮编:518000 电话: 0755-83038357, 83039243 传真: 0755-83039160

经销商: